2025年成考高起点每日一练《数学(理)》1月9日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:412

试卷答案:有

试卷介绍: 2025年成考高起点每日一练《数学(理)》1月9日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 设全集U={0,1,2,3,4},集合M={0,1,2,3,},N={2,3,4},则CuM∩CuN=()。

    A{2,3)

    B{0,1,4}

    Cφ

    DU

  • 2. 直线3x-4y-9=0与圆(θ为参数)的位置关系是

    A相交但直线不过圆心

    B相交但直线通过圆心

    C相切

    D相离

  • 3. 函数y=sin(x+11)的最大值是()。

    A11

    B1

    C-1

    D-11

  • 4. 设α是第一象限角,则sin2α=()。

    A

    B

    C

    D

  • 1. 已知am=,an=,求a3n-4m的值。  
  • 2. 已知设△ABC的三边长为a、b、C,2sin2A=3(sin2B+sin2C)且cos2A+3cosA+3cos(B-C)=1,求证:a:b:c=:1:1。
  • 3. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  
  • 4. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 1. 已知,则=______。  
  • 2. 若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。