2024年成考高起点每日一练《数学(理)》7月20日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:546

试卷答案:有

试卷介绍: 2024年成考高起点每日一练《数学(理)》7月20日专为备考2024年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 设函数,则f(x+1)=()

    Ax2+2x+1

    Bx2+2x

    Cx2+1

    Dx2

  • 2. 若向量a=(1,-1),b=(1,x),且|a+b|=2,则x=()。

    A-4

    B-1

    C1

    D4

  • 3. 5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

    A

    B

    C

    D

  • 4. 中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()

    A

    B

    C

    D

  • 1. 已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
  • 2. 某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  
  • 3. 为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
  • 4. 已知数列的前n项和 求证:是等差数列,并求公差和首项。  
  • 1. lg(tan43°tan45°tan47°)=()  
  • 2. 椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()