2024年成考高起点每日一练《数学(理)》5月11日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:429

试卷答案:有

试卷介绍: 2024年成考高起点每日一练《数学(理)》5月11日专为备考2024年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. ( )

    A-2

    B

    C

    D2

  • 2. 方程的图像是下图中的()  

    A

    B

    C

    D

  • 3. 给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()

    A①②都为真命题

    B①为真命题,②为假命题

    C①为假命题,②为真命题

    D①②都为假命题

  • 4. 袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()

    A

    B

    C

    D

  • 1. 已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
    (II)求|AB|.
  • 2. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 3. 设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值
  • 4. 为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
  • 1. 过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。
  • 2. 曲线y=在点(1,1)处的切线方程是______。