2024年成考高起点每日一练《数学(理)》2月8日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:199

试卷答案:有

试卷介绍: 2024年成考高起点每日一练《数学(理)》2月8日专为备考2024年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 设函数,则f(x+1)=()

    Ax2+2x+1

    Bx2+2x

    Cx2+1

    Dx2

  • 2. 已知全集U=R,A={x|x≥1},B={x|-1

    A{x|x≤2}

    B{x|x<2}

    C{x|-1

    D{x|-1

  • 3. 参数方程为参数)表示的图形为()

    A直线

    B

    C椭圆

    D双曲线

  • 4. 5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

    A

    B

    C

    D

  • 1. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 2. 已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
  • 3. 设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值
  • 4. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  
  • 1. 函数的定义域是()
  • 2. 的展开式是()