2024年成考高起点每日一练《数学(理)》1月30日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:937

试卷答案:有

试卷介绍: 2024年成考高起点每日一练《数学(理)》1月30日专为备考2024年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()

    A

    B

    C

    D

  • 2. 设集合A={0,1},B={0,1,2},则A∩B=()  

    A{1,2}

    B{0,2}

    C{0,1}

    D{0,1,2}

  • 3. 已知复数z=a+bi,其中a,且b≠0,则()  

    A

    B

    C

    D

  • 4. 若甲:x>1,乙:则  

    A甲是乙的必要条件,但不是乙的充分条件

    B甲是乙的充分必要条件

    C甲不是乙的充分条件,也不是乙的必要条件

    D甲是乙的充分条件,但不是乙的必要条件

  • 1. 设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值
  • 2. 某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  
  • 3. 已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
  • 4. 已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
    (II)求|AB|.
  • 1. 不等式的解集为()  
  • 2. 函数的图像与坐标轴的交点共有()