2024年成考高起点每日一练《数学(理)》1月27日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1143

试卷答案:有

试卷介绍: 2024年成考高起点每日一练《数学(理)》1月27日专为备考2024年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()

    A0.008

    B0.104

    C0.096

    D1

  • 2. 设集合A={0,1},B={0,1,2},则A∩B=()  

    A{1,2}

    B{0,2}

    C{0,1}

    D{0,1,2}

  • 3. 过点P(2,3)且在两轴上截距相等的直线方程为()  

    A

    B

    Cx+y=5

    D

  • 4. 对满足a>b的任意两个非零实数,下列不等式成立的是()  

    A

    B

    C

    D

  • 1. 已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
    (II)求|AB|.
  • 2. 已知数列的前n项和 求证:是等差数列,并求公差和首项。  
  • 3. 建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  
  • 4. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 1. 不等式的解集为()  
  • 2. 的展开式是()