2023年成考高起点每日一练《数学(理)》10月25日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1178

试卷答案:有

试卷介绍: 2023年成考高起点每日一练《数学(理)》10月25日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()

    A

    B

    C

    D

  • 2. 方程的图像是下图中的()  

    A

    B

    C

    D

  • 3. 在△ABC中,已知2B= A+C,= ac,则B-A=()  

    A0

    B

    C

    D

  • 4. 已知偶函数y=f(x),在区间[a,b](0

    A增函数

    B减函数

    C不是单调函数

    D常数

  • 1. 某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  
  • 2. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  
  • 3. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 4. 为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
  • 1. 函数的定义域是()
  • 2. 不等式的解集为()