2023年成考高起点每日一练《数学(理)》9月10日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1265

试卷答案:有

试卷介绍: 2023年成考高起点每日一练《数学(理)》9月10日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 设函数,则f(x+1)=()

    Ax2+2x+1

    Bx2+2x

    Cx2+1

    Dx2

  • 2. 的圆心在()点上  

    A(1,-2)

    B(0,5)

    C(5,5)

    D(0,0)

  • 3. 已知偶函数y=f(x),在区间[a,b](0

    A增函数

    B减函数

    C不是单调函数

    D常数

  • 4. 已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

    A-2

    B-1

    C0

    D1

  • 1. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 2. 已知数列的前n项和 求证:是等差数列,并求公差和首项。  
  • 3. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  
  • 4. 某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?  
  • 1. 长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
  • 2. 函数的图像与坐标轴的交点共有()