2023年成考高起点每日一练《数学(理)》9月5日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1279

试卷答案:有

试卷介绍: 2023年成考高起点每日一练《数学(理)》9月5日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法  

    A

    B

    C

    D

  • 2. ()

    A

    B

    C

    D

  • 3. 在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()

    A以A为直角的三角形

    Bb=c的等腰三角形

    C等边三角形

    D钝角三角形

  • 4. 设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生  

    A

    B

    C

    D

  • 1. 设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
    (II)求f(x)的极值.
  • 2. 在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  
  • 3. 已知数列的前n项和 求证:是等差数列,并求公差和首项。  
  • 4. 已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
  • 1. lg(tan43°tan45°tan47°)=()  
  • 2. 的展开式是()