2023-07-18 15:11:05 来源:吉格考试网
您好!欢迎参加成考专升本高等数学二的测验。这是一套由聚题库为您准备的真题练习,帮助您复习和巩固数学知识。答题过程中请根据自己的判断选择正确答案,并在看完答案解析后进行自我评估。加油!
题目1:下列函数中,与f(x)=2x^3+ax^2+2bx+c相应的导数是( )。
A. 6x^2+2ax+2b
B. 6x^2+2ax+b
C. 6x^2-2ax+b
D. 6x^2+2ax+b+c
答案:A
解析:根据导数的定义,对多项式函数进行求导时,指数减1,并将原来的系数乘以指数,即可得到相应的导数。根据此规律,对f(x)=2x^3+ax^2+2bx+c求导得到f'(x)=6x^2+2ax+2b。
题目2:已知函数f(x)在区间(-∞,2)上是减函数,下列结论中不正确的是( )。
A. f(x)在区间(-∞,2)上的导数小于0
B. f(x)在区间(-∞,2)上的导数大于0
C. f(x)在区间(-∞,2)上的导数严格递减
D. f(x)在区间(-∞,2)上的函数值严格递减
答案:B
解析:由已知条件可知,在区间(-∞,2)上,函数f(x)的斜率(导数)小于0,即导数<0。因此,选项B不正确。
题目3:已知函数f(x)在区间[2,+∞)上是增函数,若f(2)=3,f'(2)=5,则f(0)的值为( )。
A. 4
B. 3
C. 2
D. 1
答案:A
解析:由已知条件可知,f(x)在区间[2,+∞)上是增函数,且通过点(2,3)。由导数的定义可知,f'(2)表示函数f(x)在x=2处的斜率。根据增函数的性质,斜率大于0。所以f'(2)=5,即f(x)在x=2处的斜率为5。根据导数的定义可知,f(x)在x=2处的斜率大于0,即f(x)在x=2处是增函数。从点(2,3)向左方向延伸,可以推断出f(0)的值为4。
题目4:已知函数f(x)=x^3+3ax^2+(2a+1)x+1是奇函数,则常数a的值为( )。
A. -1
B. 0
C. 1
D. 2
答案:B
解析:由奇函数的定义可知,对于任意x,有f(-x)=-f(x)。将函数f(x)代入奇函数的定义中,得到方程组f(-x)=-x^3-3ax^2+(2a+1)x+1=-f(x)=-(x^3+3ax^2+(2a+1)x+1)。整理方程组,消去相同项,得到-3ax^2+(2a+1)x=0。由于方程对任意x成立,所以系数一致。解得a=0。因此,常数a的值为0。
题目5:已知函数f(x)=x^3+3ax^2+(2a+1)x+1是奇函数,则常数a的值为( )。
A. -1
B. 0
C. 1
D. 2
答案:B
解析:将函数f(x)代入奇函数的定义中,得到方程组f(-x)=-x^3-3ax^2+(2a+1)x+1=-f(x)=-(x^3+3ax^2+(2a+1)x+1)。整理方程组,消去相同项,得到-3ax^2+(2a+1)x=0。由于方程对任意x成立,所以系数一致。解得a=0。因此,常数a的值为0。
完整试题及答案,请下载聚题库APP,联系客服领取!
💯相关推荐:
指导:2023年成考报名
高效备考:成考专升本免费刷题题库
📋考试科目 | |||||||||
教育理论 | 民法 | 生态学基础 | 医学综合 | 艺术概论 | 政治 | 英语 | 高等数学二 | 高等数学一 | 大学语文 |
✍考试题库 | |||||||||
模拟试卷 | 历年真题 | 每日一练 |
聚题库成考网课火热招生中:为考生护航、轻松考学历!【点击前往>>】
🔑刷题神器👉【成人高考专升本考试聚题库APP】