2023年高职单招《数学》每日一练试题03月13日

2023-03-13 12:49:26 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信 Scan me!

2023年高职单招《数学》每日一练试题03月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、若函数f(x)=3x2+bx-1(b∈R)是偶函数,则f(-1)=2.

答 案:对

解 析:因为f(x)为偶函数,所以其图像关于y轴对称,f(-1)=f(1),即b=0,则f(-1)=3-1=2.

2、已知向量a=(x,-3),b=(3,1),若a⊥b,则x=-9.

答 案:错

解 析:若a⊥b,则a·b=0,即3x-3=0,即x=1.

单选题

1、从一个等差数列中可取出若干项依次构成一个等比数列,如等差数列1,2,3,4,5,6,7,8,9,… 中的第1项,第2项,第4项,第8项, …,依次构成一个等比数列1,2,4,8,…,这个等比数列的第3项 是原等差数列的第4项.若一个公差非零的等差数列{an}的第2项a2,第5项a5,第11项a11依次是 一个等比数列的前3项,则这个等比数列的第10项是原等差数列的第(   )项.  

  • A:1535                                                                
  • B:1536
  • C:2012                                                                 
  • D:2013

答 案:A

解 析:设等差数列{an} 的公差为d(d≠0),则a2,a5,a11成等比,则=a2a11, 即=(a1+d)(a1+10d),解得a1+2d,则an=a1+(n-1)d=(n+1)d,记等比数列为{bn},则b1=a2=3d,b2=a5=6d,b3=a11=12d,公比q=2,则bn=解得n=1535.故选A。

2、下列根式中无意义的是().

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:此题考查的是n次方根的定义和根式的性质.

主观题

1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.  

答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.

2、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.

答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是

填空题

1、函数f(x)的定义域是[0,1],则函数f(2x)的定义域是().

答 案:

2、函数y=-2x+2在区间[-2,2]上的最大值是(),最小值是().

答 案:6,-2

解 析:函数y=-2x+2在区间[-2,2]上单调递减,当x=-2时,函数值最大,函数值是6;当x=2时,函数值最小,函数值是一2.

简答题

1、某林场原有森林木材存量为a,木材每年以25%的增长率生长,而每年冬天要砍伐的木材量为x,为了实现经过20年木材存量翻两番,求每年木材砍伐量x的最大值.  

答 案:

2、解不等式:

答 案:化简原不等式得,即,解得所以原不等式的解集为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里
用户服务协议与隐私政策

感谢您信任并使用聚题库系统。我们深知个人信息和隐私保护的重要性,为了更好地保护您的个人权益,在使用产品前请充分阅读并理解《用户服务协议》《隐私协议》


长沙聚优教育咨询有限公司(以下简称“长沙聚优”)在此特别提醒您在使用相关服务前,请认真阅读协议条款内容,确保您充分理解协议中各条款,特别是免除或者限制责任、法律适用和管辖的条款,以及开通或使用某项服务的单独协议,并选择接受或不接受。如你未满18周岁,请在法定监护人陪同下仔细阅读并充分理解本协议,并征得法定监护人的同意后使用“聚题库”软件及相关服务。除非您接受本协议所有条款,否则您无权注册、登录或使用本协议所涉服务。


隐私权政策适用我们提供的软件、网站、服务,包括但不限于适用于电脑、移动智能终端产品及服务。


本隐私权政策旨在帮助您了解我们会收集哪些数据,为什么收集这些数据、会利用这些数据做什么以及我们如何保护这些数据。了解这些内容,对于您行使个人权利及保护您的个人信息至关重要,请您在使用我们产品或服务前务必抽出时间认真阅读本政策。

不同意
同意

需要获得您的同意后才能使用服务