2023-02-20 12:35:56 来源:吉格考试网
2023年高职单招《数学》每日一练试题02月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、同时抛三枚硬币,恰有两枚硬币正面朝上的概率是.
答 案:对
解 析:每一枚硬币有2种情况,三枚硬币就是23=8种情况,两枚正面朝上即为一枚反面朝上,可能有3种情况,所以概率为
2、已知向量a=(x,-3),b=(3,1),若a⊥b,则x=-9.
答 案:错
解 析:若a⊥b,则a·b=0,即3x-3=0,即x=1.
单选题
1、有四块不同大小的试验田,要种3种不同蔬菜,若每块最多种1种蔬菜,每种蔬菜都得种入一种田里,则不同种植方法的种数是()
答 案:B
2、已知:,则A的范围是()
答 案:B
主观题
1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
2、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.
答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是
填空题
1、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型的电视机各1台,则不同的取法共有_______种.
答 案:70
解 析:
2、若,则f(5)=_____。
答 案:31
简答题
1、相距1400m的A,B两个哨所,听到炮弹爆炸声的时间差为3s,求炮弹爆炸点的轨迹方程(声速为340m/s).
答 案:
2、
答 案: