2023-01-23 12:44:39 来源:吉格考试网
2023年高职单招《数学》每日一练试题01月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、同时抛三枚硬币,恰有两枚硬币正面朝上的概率是.
答 案:对
解 析:每一枚硬币有2种情况,三枚硬币就是23=8种情况,两枚正面朝上即为一枚反面朝上,可能有3种情况,所以概率为
2、已知向量a=(x,-3),b=(3,1),若a⊥b,则x=-9.
答 案:错
解 析:若a⊥b,则a·b=0,即3x-3=0,即x=1.
单选题
1、
答 案:C
解 析:
2、已知,且θ为第二象限角,那么2θ为().
答 案:C
主观题
1、如图,设F1,F2分别为椭圆的左、右焦点,且|F1F2|=2√2.(1)求椭圆C的标准方程;
(2)设P为第一象限内位于椭圆C上的一点,过点P和F2的直线交y轴于点Q.若QF1⊥QF2,求线段PQ的长.
答 案:(1)由题意得F1(-√2,0),F2(V2,0),c=√2,a2=16-a2+c2,解得a2=9.所以椭圆C的标准方程为(2)因为QF1与QF2垂直且相等,所以△QF1F2为等腰直角三角形.
又|F1F2|=2√2,所以|QF1|=|QF2|=2.
设|PF2|=m,因为|PF1|+|PF2|=2a,所以|PF1|=2×√9-m=6-m.
因为△QPF1为直角三角形,所以|QF1|2+|PQ|2=|PF1|2.
即22+(2+m)2=(6-m)2,m2+4m+8=x2-12m+36,解得所以
2、如图,在正三棱柱ABC-A1B1C1中,D为BC的中点,AA1=AB=1.(1)证明:A1C//平面AB1D;
(2)求二面角B-AB1-D的正切值.
答 案:(1)证明:连接A1B,AB1,交于点E,则E是AB1的中点,连接DE,如图所示.因为D为BC的中点,所以DE是△A1EC的中位线,DE//A1C.因为A1C平面AB1D,DE平面AB1D,所以A1C//平面AB1D.(2)过D作DF⊥AB于F,过F作FG⊥AB1于G,连接DG.如上图所示.
因为平面A1ABB1⊥平面ABC,DF⊥AB,所以DF⊥平面A1ABB1.
因为AB1平面A1ABB1,所以AB1⊥DF.
因为FG⊥AB1,所以AB1⊥平面DFG,所以AB1⊥DG.
因为AB1⊥FG,AB1⊥DG,FG∩DG=G,所以为二面角B-AB1-D的平面角.
因为AA1=AB=1,所以在等边三角形ABC中
在△ABB1中,
所以在Rt△DFG中,
填空题
1、集合,且M中至少有一个偶数,则这样的集合共有_____个。
答 案:5
解 析:
2、已知集合,集合,则A∩B=().
答 案:
解 析:因为集合,集合,所以A∩B=
简答题
1、设一直线经过点(-2,4),它的倾斜角是直线y=+3的倾斜角的2倍,求它的方程.
答 案:
2、
答 案: