2024年高职单招《数学》每日一练试题11月12日

2024-11-12 14:50:07 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年高职单招《数学》每日一练试题11月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、奇函数的图像关于y轴对称。()  

答 案:错

解 析:奇函数原点对称,所以错误

2、甲车间的出勤率比乙车间高,说明甲车间人数比乙车间人数多。()  

答 案:错

解 析:出勤率=出勤人数÷全体人数×100%,所以出勤率的高低决定于出勤人数和全体人数的比,例如:甲车间有40人,出勤40人,出勤率为100%;乙车间有50人,出勤48人,出勤率是96%;虽然甲车间出乙车间出勤率高,但人数却少于车间班,所以本题说法错误;故答案为:错误。

单选题

1、直角三角形三条边分别是3cm,4cm,5cm,他的面积是()cm2  

  • A:6
  • B:8
  • C:10
  • D:12

答 案:A

2、若平行四边形有三个顶点坐标依次为(0,0),(0,b),(a,c),则第四个顶点的坐标为()

  • A:(b+c,2a)
  • B:(a,c-b)
  • C:(b-c,-a)或(b+c,2a)
  • D:(2a,b+c)或(-a,b-c)

答 案:B

解 析:提示:利用中点坐标公式,对角线中点坐标为,设第四顶点的坐标为(x,y),则,得x=a,y=c-b

多选题

1、已知等差数列{an}的前n项和为,公差为d,则()  

  • A:a1=1
  • B:d=1
  • C:2Sn-an=1+3+5+...+(2n-1)
  • D:

答 案:ABC

2、下列命题中,不正确的是()  

  • A:三点可确定一个圆
  • B:三角形的外心是三角形三边中线的交点
  • C:一个三角形有且只有一个外接圆
  • D:三角形的外心必在三角形的内部或外部

答 案:ABD

解 析:A、不在同一条直线上的三点确定一个圆,故本选项错误;B.、三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C、三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D、直角三角形的外心在斜边中点处,故本选项错误。故选:ABD

主观题

1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.  

答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.

2、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.

答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以

填空题

1、设,则M与N的大小关系为_____.  

答 案:M<N

解 析:

2、抛物线的焦点坐标是_______,准线方程是_______.

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里