2024年高职单招《数学》每日一练试题09月05日

2024-09-05 14:44:07 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年高职单招《数学》每日一练试题09月05日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、若等比数列的前四项依次为1,2,4,8,则该数列的公比q=2。()  

答 案:对

解 析:公比为后一项与前一项之比,即2/1=2,故公比为2。故正确

2、长度相等的两条弧是等弧。()  

答 案:错

解 析:因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故错误

单选题

1、函数的值域是 ( )。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

2、长方体的长、宽、高都扩大到原来的2倍,长方体的体积扩大到原来的()  

  • A:2倍
  • B:4倍
  • C:6倍
  • D:8倍

答 案:D

解 析:∵长方体的体积为=长×宽×高,∴长、宽、高都扩大为原来的2倍,体积扩大为原来的8倍。故选:D。

多选题

1、已知等差数列{an}的前n项和为,公差为d,则()  

  • A:a1=1
  • B:d=1
  • C:2Sn-an=1+3+5+...+(2n-1)
  • D:

答 案:ABC

2、设等差数列{an}的公差为d,其前n项和为Sn,且a1=-5,S3=-9,则()  

  • A:d=2
  • B:S2,S4,S6为等差数列
  • C:数列是等比数列
  • D:S3是Sn的最小值

答 案:ACD

主观题

1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.  

答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.

2、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.

答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以

填空题

1、  

答 案:2x-18

2、数列的通项公式为其中最大的一项是第____项。  

答 案:5

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里