2024年高职单招《数学》每日一练试题08月27日

2024-08-27 14:38:58 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年高职单招《数学》每日一练试题08月27日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、在平面直角坐标系中,不等式x-y+2>0所表示的平面区域为直线x-y+2=0的左上方.()  

答 案:错

解 析:不等式x-y+2>0所表示的平面区域如图所示,(令x-y+2=0,有x=0,y=2,y=0,x=-2),将(0,0)代入x-y+2>0中有2>0,所以不等式x-y+2>0所表示平面区域是x-y+2=0的右下方)如图阴影部分,所以错误.

2、由,可得。()  

答 案:错

单选题

1、已知等比数列{an}中,4a1,1/2a3,3a2成等差数列,则()  

  • A:4或-1
  • B:4
  • C:-1
  • D:-4

答 案:B

2、已知数列{an}的前n项和为Sn=5n2−n,则a6+a7+a8+a9+a10等于()

  • A: 250
  • B: 270
  • C: 370
  • D: 490

答 案:C

多选题

1、设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Kn是其前n项的积,且K5K8,则下列选项中成立的是()  

  • A:0
  • B:a7=1
  • C:K9>K5
  • D:K6与K7均为Kn的最大值

答 案:ABD

解 析:根据题意,依次分析选项:
对于B,若K6=K7,则a7==1,故B正确;
对于A,由K5<K6可得a6=>1,则q=∈(0,1),故A正确;
对于C,由{an}是各项为正数的等比数列且q∈(0,1)可得数列单调递减,则有K9<K5,故C错误;
对于D,结合K5<K6,K6=K7>K8,可得D正确.
故选:ABD.

2、列命题中正确的个数是(  )  

  • A:若a,b,c成等差数列,则a2,b2,c2一定成等差数列;
  • B:若a,b,c成等差数列,则2a,2b,2c可能成等差数列;
  • C:若a,b,c成等差数列,则ka+2,kb+2,kc+2一定成等差数列;
  • D:若a,b,c成等差数列,则1/a,1/b,1/c可能成等差数列.

答 案:BCD

解 析:对于A取a=1,b=2,c=3,a2=1,b2=4,c2=9,A错; 对于B,a=b=c,2a=2b=2c,B正确;对于C,∵a,b,c成等差数列,∴a+c=2b.∴(ka+2)+(kc+2)=k(a+c)+4=2(kb+2),C正确;对于D,a=b=c≠0?1/a=1/b=1/c,D正确。综上可知选BCD。  

主观题

1、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.

答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以

2、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.

答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是

填空题

1、一元二次不等式的解集是().

答 案:[-5,2]

解 析:注意二次项系数为正.将不等式移项得,即(x—2)(x+5)≤0,解得-5≤x≤2.

2、若A、B为两独立事件,且________.

答 案:0.5

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里