2024-08-22 14:38:50 来源:吉格考试网
2024年高职单招《数学》每日一练试题08月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、记等差数列{an}的前n项和为Sn,若首项a1=1/2,公差d=3,则S4=20。()
答 案:对
2、方程x2-2x+3=0没有实根。()
答 案:对
单选题
1、在∆ABC中,AB=3,AC=2,若,则()
答 案:C
2、已知则a,b,-a,—b的大小关系是().
答 案:D
解 析:因为a+b>0,b<0,则a>0,b<0,-a<0,-b>0,a>-b,b>-a,所以a>-b>b>-a.故选D.
多选题
1、设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Kn是其前n项的积,且K5K8,则下列选项中成立的是()
- B:a7=1
- C:K9>K5
- D:K6与K7均为Kn的最大值
答 案:ABD
解 析:根据题意,依次分析选项:
对于B,若K6=K7,则a7==1,故B正确;
对于A,由K5<K6可得a6=>1,则q=∈(0,1),故A正确;
对于C,由{an}是各项为正数的等比数列且q∈(0,1)可得数列单调递减,则有K9<K5,故C错误;
对于D,结合K5<K6,K6=K7>K8,可得D正确.
故选:ABD.
2、已知函数y=1/2sin2x则()
答 案:BC
解 析:A:sin2x最大值为1,则y=1/2sin2x的最大值为1/2,故A错B对。C:T=2π/W=2π/2=π,故C对D错
主观题
1、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.
答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以则
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、,则f(2x)_____。
答 案:
2、5人排成一列,其中甲、乙两人相邻的排法有______种.
答 案:48
解 析:由题意,利用捆绑法,甲、乙两人必须相邻的方法数为