2024-07-23 14:51:37 来源:吉格考试网
2024年高职单招《数学》每日一练试题07月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、过平面外一点存在无数条直线和这个平面垂直
答 案:错
解 析:过平面外一点有且只有一条直线和这个平面垂直,故错误
2、在等比数列{an}中,若a1=4,q=1/2,则该数列前三项的和S3等于7。()
答 案:对
单选题
1、函数的最大值是()
答 案:A
2、直线y=2-x与y=-x+1/2的位置关系是()
答 案:A
多选题
1、设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Kn是其前n项的积,且K5K8,则下列选项中成立的是()
- B:a7=1
- C:K9>K5
- D:K6与K7均为Kn的最大值
答 案:ABD
解 析:根据题意,依次分析选项:
对于B,若K6=K7,则a7==1,故B正确;
对于A,由K5<K6可得a6=>1,则q=∈(0,1),故A正确;
对于C,由{an}是各项为正数的等比数列且q∈(0,1)可得数列单调递减,则有K9<K5,故C错误;
对于D,结合K5<K6,K6=K7>K8,可得D正确.
故选:ABD.
2、下列计算结果正确的是()
答 案:AC
主观题
1、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.
答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以则
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、设等比数列的公比q=2,前n项和为()
答 案:
解 析:由等比数列通项公式及前n项和公式可
2、如图,A是∆BCD所在平面外一点,M,N分别是∆ABC和∆ACD的重心,若BD=a,则MN=_______.
答 案:
解 析: