2024-07-02 14:21:04 来源:吉格考试网
2024年高职单招《数学》每日一练试题07月02日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、如果ab=0,那么a=0且b=0。()
答 案:错
解 析:可能a或b一方等于0,也可能两者都为0
2、已知三边长分别为3,5,7,则是锐角三角形。()
答 案:错
解 析:因为△ABC的三条边长分别为3、5、7,由余弦定理b2=a2+c2-2accosB,即72=52+32-2×5×3cosB,cosB=-,所以B为钝角.三角形是钝角三角形.
单选题
1、下列轴对称图形中,对称轴条数最少的是()
答 案:A
解 析:等边三角形有三条;正方形有四条;正六边形有6条;圆无数条
2、一个正方体的体积扩大为原来的8倍,它的棱长变为原来的()倍。
答 案:D
多选题
1、设等差数列{an}的公差为d,其前n项和为Sn,且a1=-5,S3=-9,则()
答 案:ACD
2、下列四个命题中正确的是()
答 案:CD
解 析:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意。故选:CD。
主观题
1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
2、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.
答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以则
填空题
1、
答 案:-1/8
2、设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,4},用集合A和集合B表示全集U,则()。
答 案:U=
解 析:U={1,2,3,4,5,6},A={1,3,5},B=(2,4),所以={2,4,6},={1,3.5,6},所以={2,4,6}U{1,3,5,6}={1,2,3,4,5,6}.所以U=。