2024-06-03 14:41:28 来源:吉格考试网
2024年高职单招《数学》每日一练试题06月03日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、各边相等的多边形是正多边形。()
答 案:错
解 析:菱形的各边相等,但它不一定是正方形。
2、两直线2x-5y+6=0与5x+2y+5=0的位置关系是垂直。()
答 案:对
单选题
1、如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()
答 案:B
解 析:a,b相交后,与OK组成了一个三角形,根据三角形的外角的性质列式计算即可得解。根据图形可知,a,b相交所成的锐角=100°-70°=30°。故选B
2、若实数满足x2-6x+8≤0,则log2x的取值范围是()
答 案:A
多选题
1、下列命题中,不正确的是()
答 案:ABD
解 析:A、不在同一条直线上的三点确定一个圆,故本选项错误;B.、三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C、三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D、直角三角形的外心在斜边中点处,故本选项错误。故选:ABD
2、下列四个命题中正确的是()
答 案:CD
解 析:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意。故选:CD。
主观题
1、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.
答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、已知函数f(x)=lg x,则f(100)-f(1)=().
答 案:2
解 析:因为f(x)=lg x,所以f(100)-f(1)=lg 100-lg 1=2-0=2.
2、请观察数列:1,1,2,3,5,( ),13…运用合情推理,括号里的数最可能是( )
答 案:8
解 析:由已知可得:该数列从第三项开始,每一项等于前两项的和, 由3+5=8得,括号里的数最可能的是8