2024年高职单招《数学》每日一练试题05月09日

2024-05-09 14:41:08 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年高职单招《数学》每日一练试题05月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、函数y=1/x在(0,+∞)上单调递减。()  

答 案:对

2、相等的圆心角所对的弧相等。()  

答 案:错

解 析:相等的圆心角所对的弧不一定相等。在同圆或等园中,相等的圆心角所对的弧相等。在不同的圆中,相等的圆心角所对的弧不一定相等。

单选题

1、等差数列中, a1+a4+a7=39,a3+a6+a9=27,则数列的前9项和S9,等于(          ).  

  • A:66                                                                       
  • B:99
  • C:144                                                                      
  • D:297

答 案:B

解 析:设公差为d,则a3+a6+a9=a1+2d+a4+2d+a7+2d, 即27=39+6d,解得d=-2,则a2+a5+a8=a1+d+a4+d+a7+d=39+3×(-2)=33,所以S9=a1+a2+ … +a8=39+33+27=99 .故选B  

2、如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()  

  • A:1
  • B:√2
  • C:√3
  • D:2

答 案:D

多选题

1、已知等差数列{an}的前n项和为,公差为d,则()  

  • A:a1=1
  • B:d=1
  • C:
  • D:2Sn-an=1+3+5+...+(2n-1)

答 案:ABD

2、设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Kn是其前n项的积,且K5K8,则下列选项中成立的是()  

  • A:0
  • B:a7=1
  • C:K9>K5
  • D:K6与K7均为Kn的最大值

答 案:ABD

解 析:根据题意,依次分析选项:
对于B,若K6=K7,则a7==1,故B正确;
对于A,由K5<K6可得a6=>1,则q=∈(0,1),故A正确;
对于C,由{an}是各项为正数的等比数列且q∈(0,1)可得数列单调递减,则有K9<K5,故C错误;
对于D,结合K5<K6,K6=K7>K8,可得D正确.
故选:ABD.

主观题

1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.  

答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.

2、已知等差数列{an}的前n项和Sn且S5=35,S8=104.
(1)求数列{an}的通项公式;
(2)若{bn}为等比数列,b1=a2,b2=a3+2,求数列{b,}的公比q及前n项和Tn.

答 案:(1)所以a6=19.则数列{an}的公差,通项公式为an=a6+(n-6)d=19+4n-24=4n-5.(2)因为b1=a2=4×2-5=3,b2=a3+2=4×3-5+2=9,所以

填空题

1、已知向量a=(1,2),b=(1,0),则a▪b=()  

答 案:

解 析:由向量数量积的坐标表示得a▪b=1×1+2×0=1.  

2、函数y=-3x2-4x+1的单调递减区间为()

答 案:

解 析:的图像开口向下,所以其单调递减区间为

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里