2024年高职单招《数学》每日一练试题04月22日

2024-04-22 14:44:35 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年高职单招《数学》每日一练试题04月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、若直线与圆有一个公共点,则直线是圆的切线。()  

答 案:错

解 析:与圆只有一个公共点的直线才是圆的切线。

2、若,则。()  

答 案:错

解 析:所以  

单选题

1、如果,则x=()  

  • A:2
  • B:-2
  • C:4
  • D:-4

答 案:D

2、用0,1,3,5这四个数字,可以组成没有重复数字的四位数的个数是()

  • A:24
  • B:30
  • C:12
  • D:18

答 案:D

解 析:依据乘法原理:
也就是千位有3种选择(因为0不能做千位),百位上有3种选择,十位有2种选择,个位上有1种选择.
3*3*2*1=18个

多选题

1、设等差数列{an}的公差为d,其前n项和为Sn,且a1=-5,S3=-9,则()  

  • A:d=2
  • B:S2,S4,S6为等差数列
  • C:数列是等比数列
  • D:S3是Sn的最小值

答 案:ACD

2、下列关于圆的叙述正确的有()  

  • A:对角互补的四边形是圆内接四边形
  • B:圆的切线垂直于圆的半径
  • C:正多边形中心角的度数等于这个正多边形一个外角的度数
  • D:过圆外一点所画的圆的两条切线长相等

答 案:ACD

解 析:A、由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B、圆的切线垂直于过切点的半径,B选项错误;C、正多边形中心角的度数等于这个正多边形一个外角的度数,都等于360°/n,C选项正确;D、过圆外一点引的圆的两条切线,则切线长相等,D选项正确。故选:ACD

主观题

1、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.  

答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.

2、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.

答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是

填空题

1、函数的最大值是_____,最小值正周期是______。  

答 案:1,

2、已知,则A=_____。

答 案:

解 析:∵A⊆B,A⊆C,
∴A⊆(B∩C)
∵B={1,2,3,5},C={0,2,4,8},
∴B∩C={2}
而A⊆(B∩C)则A={2}或∅ 先根据A⊆B,A⊆C可知A⊆(B∩C),然后求出B∩C,最后求出所求满足条件的A,最后得到结论.

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
单招真题交流3群
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里