2024-03-08 14:36:10 来源:吉格考试网
2024年高职单招《数学》每日一练试题03月08日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若2,x,8成等比数列,则x=±4。()
答 案:对
2、若,则。()
答 案:错
解 析:所以
单选题
1、已知角α是第三象限角,则-α的终边在()
答 案:B
2、一元二次函数y=x2+4x-2在区间[1,4]上的最小值是()
答 案:C
解 析:要先看本函数开口向上,对称轴是x=-2.那么在【1,4】区间是递增的,那么最小值是x=1时,求出y=1+4-2=3
多选题
1、已知向量,,则()
答 案:AD
解 析:若设a=(x1,y1),b=(x2,y2),a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。本题中-2*4+2*4=0,则两个向量垂直
2、已知数列{3n-1},下面选项正确的是()
答 案:BCD
解 析:已知数列{3n-1},这个数列是公差为3的等差数列,故A错误,B正确。数列第五项=3*5-1=14。故C正确。数列第七项=3*7-1=20.故D正确
主观题
1、已知函数f(x)=log3(3x—1).(1)求函数f(x)的定义域;
(2)若f(x)<1,求x的取值范围.
答 案:(1)根据题意可得,3x-1>0,解得所以函数f(x)的定义域是(2)因为f(x)=log3(3x-1)<1=log33,f(x)为定义域上的增函数,所以O<3x-1<3,解得所以x的取值范围是
2、已知两直线,当m为何值时,l1与l2: (1)相交;(2)平行;(3)重合.
答 案:(1)当1×3m-(m-2)m2=-m2(m-2)+3m=-m(m-3)(m+1)≠0时,l1与l2相交,即m≠0,m≠3且m≠-1. (2)当-m(m-3)(m+1)=0且1×2m-(m-2)×6=12-4m≠0时,l1与l2平行,即m=0或m=-1. (3)当-m(m-3)(m+1)=0且12-4m=0时,l1与l2重合,即m=3.
填空题
1、比较m,n的大小:
答 案:(1)>(2)<
解 析:考察指数函数的单调性
底数 0.5∈(0,1)单调递减,m>n
底数 3∈(1,+∞)单调递增,m<n
2、函数的单调递增区间是_____。
答 案: