2023年成考专升本《高等数学一》每日一练试题07月13日

2023-07-13 11:17:53 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考专升本《高等数学一》每日一练试题07月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设则dy=()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

2、设z=(y-x)2+,则

  • A:
  • B:
  • C:2(x-y)
  • D:2(y-x)

答 案:D

解 析:

3、设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。

  • A:至少有一个零点
  • B:有且仅有一个零点
  • C:没有零点
  • D:零点的个数不能确定

答 案:B

解 析:因为函数f(x)在[0,1]上连续,f(0)<0,f(1)>0,故存在,使得,又f'(x)>0,函数在(0,1)上单调增加,故f(x)在(0,1)内有且仅有一个零点。

主观题

1、计算

答 案:解:

2、设切线l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线,及y轴围成的平面图形的面积S。

答 案:解:y=x2+3,=2x。切点(1,4),y'(1)=2.故切线l的方程为y-4=2(x-1),即

3、求

答 案:解:用洛必达法则,得

填空题

1、=()。

答 案:ln2

解 析:

2、微分方程的通解为()。

答 案:

解 析:方程可化为:,是变量可分离的方程,对两边积分即可得通解。

3、曲线y=x2-x在点(1,0)处的切线斜率为()。

答 案:1

解 析:点(1,0)在曲线y=x2-x上,,故点(1,0)处切线的斜率为1。

简答题

1、设f(x)=在x=0连续,试确定A,B.

答 案: 欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里