2023年成考专升本《高等数学一》每日一练试题06月22日

2023-06-22 11:04:17 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考专升本《高等数学一》每日一练试题06月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、()。

  • A:>0
  • B:<0
  • C:=0
  • D:不存在

答 案:C

解 析:被积函数为奇函数,且积分区间[1,1]为对称区间,由定积分的对称性质知该函数的积分为0。

2、设函数f(x)满足且f(0)=0,则f(x)=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由所以f(u)=u-由f(0)=0,得C=0.所以

3、设函数,则f(x)的导数f'(x)=()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由可变限积分求导公式可知

主观题

1、设,求y'.

答 案:解:

2、某厂要生产容积为V0的圆柱形罐头盒,问怎样设计才能使所用材料最省?

答 案:解:设圆柱形罐头盒的底圆半径为r,高为h,表面积为S,则由②得,代入①得现在的问题归结为求r在(0,+∞)上取何值时,函数S在其上的值最小。
,得
由②,当时,相应的h为:
可见当所做罐头盒的高与底圆直径相等时,所用材料最省。

3、计算,其中D为x2+y2=1,y=x及y=0和第一象限所围成的图形.

答 案:解:在极坐标系中,D可表示为

填空题

1、微分方程y'+4y=0的通解为()。

答 案:y=Ce-4x

解 析:将微分方程分离变量,得,等式两边分别积分,得

2、设函数在x=0处连续,则a=()。

答 案:0

3、=()。

答 案:2

解 析:

简答题

1、设函数  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里