2023-06-01 10:49:35 来源:吉格考试网
2023年成考专升本《高等数学二》每日一练试题06月01日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、设y=x2+sinx+ln2,则y'=().
答 案:B
解 析:.
2、().
答 案:D
解 析:因为定积分是个常数,故对其求导为0.
3、极限等于()
答 案:C
解 析:
主观题
1、求函数f(x)=,在上的最大值和最小值.
答 案:解:,令,在内解得驻点为,,求出以上各点及端点处函数值比较可得,f(x)在上最大值为,最小值为.
2、设函数,求y'.
答 案:解:
3、设随机变量ξ的分布列为求E(ξ)和D(ξ).
答 案:解:E(ξ)=-1×0.2+0×0.1+1×0.4+2×0.3=0.8.D(ξ)=(-1-0.8)2×0.2+(0-0.8)2×0.1+(1-0.8)2×0.4+(2-0.8)×0.3=1.16.
填空题
1、斜边长为l的直角三角形中,最大周长为()
答 案:(1+)l
解 析:该题也是条件极值问题,用拉格朗日乘数法求解,设直角三角形的两直角边长分别为x和y,周长为z,且z=l+x+y(0<x<l,0<y<l),条件函数为l2=x2+y2.令F(x,y,λ)=l+x+y+λ(x2+y2-l2)求解方程组根据实际意义,一定存在最大周长,所x=y=时,即斜边长为l时的等腰直角三角形周长最大,且此周长为(1+)l.
2、设事件A,B相互独立,且则常数a=()
答 案:
解 析:由加法公式
3、已知函数在x=0处连续,则a=().
答 案:2
解 析:,又f(x)在x=0处连续,所以.
简答题
1、求由方程确定的隐函数和全微分
答 案:等式两边对x求导,将y看作常数,则同理所以