2023年成考专升本《高等数学一》每日一练试题04月05日

2023-04-05 10:58:50 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考专升本《高等数学一》每日一练试题04月05日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设方程有特解则他的通解是()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:考虑对应的齐次方程的通解,特征方程所以r1=-1,r2=3,所以的通解为,所以原方程的通解为

2、下列等式成立的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由

3、()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:

主观题

1、求

答 案:解:

2、求函数y=xex的极小值点与极小值

答 案:解:方法一:令y'=0,得x=-1。
当x<-1时,y'<0;当x>-1时,y'>0。
故极小值点为x=-1,极小值为
方法二:,
令y'=0,得x=-1,又
故极小值点为x=-1,极小值为

3、将f(x)=arctanx(|x|<1)展开成x的幂级数。

答 案:解:因为,两边积分可得

填空题

1、过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为=()。

答 案:x-y+3z=2

解 析:已知平面的法向量n1=(1,-1,3),所求平面π与π1平行,则平面π的法向量n//n1,取n=(1,-1,3),所求平面过点M0=(1,-1,0),由平面的点法式方程可知所求平面方程为,即x-y+3z=2。

2、设则F(x)=f(x)+g(x)的间断点是()。

答 案:x=1

解 析:由于f(x)有分段点x=0,g(x)有分段点x=1,故需分三个区间讨论F(x)=f(x)+g(x)的表达式,而x=0,x=1的函数值单独列出,整理后得又因所以x=0是F(x)的连续点,而所以x=1是F(x)的间断点。

3、设,则y'=()。

答 案:

解 析:

简答题

1、计算  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里