2024-11-21 11:34:44 来源:吉格考试网
2024年成考专升本《高等数学二》每日一练试题11月21日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若,则。()
答 案:错
解 析:所以
单选题
1、设函数z=,则().
答 案:A
解 析:
2、( ).
答 案:D
解 析:
主观题
1、设随机变量的分布列为,求a的值并求
答 案:解:因为0.1+0.3+0.2+a=1,得a=0.4.
2、设曲线y=cosx(0≤x≤π/2)与x轴、y轴所围成的图形面积被曲线y=asinx,y=bsinx(a>b>0)三等分,试确定a、b的值.
答 案:解:由y=cosx,y=asinx,得tanx=1/a,故有;同理可求得.因为,令这三部分的面积分别为D1,D2,D3,有D1=D2=D3=1/3.,故a=4/3.故b=5/12.
填空题
1、斜边长为l的直角三角形中,最大周长为()
答 案:(1+)l
解 析:该题也是条件极值问题,用拉格朗日乘数法求解,设直角三角形的两直角边长分别为x和y,周长为z,且z=l+x+y(0<x<l,0<y<l),条件函数为l2=x2+y2.令F(x,y,λ)=l+x+y+λ(x2+y2-l2)求解方程组根据实际意义,一定存在最大周长,所x=y=时,即斜边长为l时的等腰直角三角形周长最大,且此周长为(1+)l.
2、()
答 案:
解 析:.
简答题
1、
答 案:
2、求曲线直线x=1和x轴所围成的有界平面图形的面积S,及该平面图形绕x轴旋转一周所得旋转体的体积V。
答 案:
解 析: