2024年成考专升本《高等数学一》每日一练试题10月28日

2024-10-28 11:29:09 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题10月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、过点(1,0,0),(0,1,0),(0,0,1)的平面方程为()。

  • A:x+y+z=1
  • B:2x+y+z=1
  • C:x+2y+z=1
  • D:z+y+2z=1

答 案:A

解 析:方法一:设所求平面方程为Ax+By+Cz+D=0.由于点(1,0,0),(0,1,0),(0,0,1)在平面上,将上述三点坐标分别代入所设方程,可得A+D=0,B+D=0,C+D=0,即A=B=C=-D,再代回方程可得x+y+z=1。方法二:由于点(1,0,0),(0,1,0),(0,0,1)分别位于x轴、y轴、z轴上,可由平面的截距式方程得出x+y+z=1即为所求平面方程。

2、设函数f(x)在x=x0处可导,且=2,则等于()。

  • A:
  • B:2
  • C:0
  • D:4

答 案:D

解 析:依题意得

3、函数的间断点是x=()。

  • A:1
  • B:0
  • C:-1
  • D:2

答 案:C

解 析:函数的间断点为其分母等于0的点,即x+1=0,x=-1。

主观题

1、设z=,求

答 案:解:令u=x+2y,v=x2+y2,根据多元函数的复合函数求导法则得

2、求微分方程的通解.

答 案:解:原方程对应的齐次方程为。特征方程为,r2+3r+2=0,特征值为r1=-2,r2=-1。齐次方程的通解为y=C1e-2x+C2e-x
设特解为y*=Aex,代入原方程有6A=6,得A=1。
所以原方程的通解为y=C1e-2x+C2e-X+ex(C1,C2为任意常数)。

3、试证:当x>0时,有不等式

答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证

,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以
综上可得:当x>0时,

填空题

1、的间断点为()。

答 案:x=-3

解 析:x=-3时,没有定义,因此x=-3为间断点。

2、过坐标原点且与直线x-1/3=y+1/2=z-3/-2垂直的平面方程为()。

答 案:3x+2y-2z=0

解 析:

3、微分方程y'=x+1的通解为y=()。

答 案:

解 析:方程为可分离变量方程,,等式两边分别积分

简答题

1、设F(x)为f(x)的一个原函数,且f(x)=xInx,求F(x)。  

答 案:本题考查的知识点为两个:原函数的概念和分部积分法。 由题设可得知:  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里