2024年成考专升本《高等数学一》每日一练试题09月20日

2024-09-20 11:22:54 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题09月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设曲线上某点处的切线方程为y=mx,则m的值可能是()。

  • A:0
  • B:1
  • C:2
  • D:3

答 案:B

解 析:又曲线上某点处的切线方程为y=mx,设该点为,则有,解得m=1或5。

2、()。

  • A:>0
  • B:<0
  • C:=0
  • D:不存在

答 案:C

解 析:被积函数为奇函数,且积分区间[1,1]为对称区间,由定积分的对称性质知该函数的积分为0。

3、若存在,不存在,则()。

  • A:都不存在
  • B:都存在
  • C:之中的一个存在
  • D:存在与否与f(x),g(x)的具体形式有关

答 案:A

解 析:根据极限的四则运算法则可知:,所以当存在,不存在时,均不存在。

主观题

1、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为,解得r1=3,r2=-2.所以齐次通解为。设方程的特解设为y*=(Ax+B)ex,代入原微分方程可解得,A=,B=.即非齐次微分方程特解为。所以微分方程的通解为

2、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为特征根为r=1(二重根)。齐次方程的通解为y=(C1+C2x)(C1,C2为任意常数)。
设原方程的特解为,代入原方程可得因此
故原方程的通解为

3、设f(x)是以T为周期的连续函数,a为任意常数,证明:

答 案:证:因为令x=T+t,做变量替换得

填空题

1、设z=sin(y+x2),则=()。  

答 案:2xcos(y+x2)。

解 析:本题考查的知识点为二元函数的偏导数计算。  

2、  

答 案:

解 析:

3、已知,则=()。

答 案:

解 析:

简答题

1、求方程的通解。  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里