2024年成考专升本《高等数学一》每日一练试题08月04日

2024-08-04 11:30:36 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题08月04日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、级数收敛是级数收敛的()。

  • A:充分条件
  • B:必要条件
  • C:充分必要条件
  • D:既非充分也非必要条件

答 案:A

解 析:级数收敛为绝对收敛,所以级数必然收敛;但级数收敛不一定能得到级数收敛,所以为充分非必要条件。

2、当x→0时,与1-cosx比较,可得()。

  • A:是较1-cosx高阶的无穷小量
  • B:是较1-cosx低阶的无穷小量
  • C:与1-cosx是同阶无穷小量,但不是等价无穷小量
  • D:与1-cosx是等价无穷小量

答 案:B

解 析:因为,所以是较1-cosx的低阶无穷小量。

3、高等数学一(专升本),历年真题,2016年成人高等《高等数学(一)》(专升本)真题()

  • A:1/2
  • B:1
  • C:2
  • D:3

答 案:C

主观题

1、求

答 案:解:利用洛必达法则,得

2、求微分方程的通解.

答 案:解:微分方程的特征方程为,解得。故齐次方程的通解为。微分方程的特解为,将其代入微分方程得,则a=-1。故微分方程的通解为

3、计算

答 案:

填空题

1、幂级数的收敛半径为()

答 案:3

解 析:所给幂级数通项为所以收敛半径R=3

2、过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为()

答 案:3x-y-z-4=0

解 析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求的平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,及3x-y-z-4=0。

3、当P=()时,级数收敛

答 案:>1

解 析:因当P>1时收敛,由比较判别法知P>1时收敛。

简答题

1、设f(x)=在x=0连续,试确定A,B.

答 案: 欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里