2024年成考专升本《高等数学一》每日一练试题07月10日

2024-07-10 11:30:11 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题07月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数y=f(x)在点x0处可导的充分必要条件是()。

  • A:它在该点处的左导数和右导数存在
  • B:它在该点处连续
  • C:它在该点处存在极限
  • D:它在该点处可微

答 案:D

解 析:D项,对于一元函数来说,函数在某一点可导和在某一点可微等价.A项,函数在某一点的左导数和右导数存在且相等是函数在该点可导的充分必要条件.B项,可导一定连续,但连续不一定可导,例如函数在x=0连续但不可导;C项,极限存在与函数存在不存在必然联系。

2、微分方程y''=3x的通解是()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:y''=3x,则

3、设z=2x2+3xy-y2,则等于()。

  • A:4
  • B:3
  • C:2
  • D:-2

答 案:A

解 析:

主观题

1、求微分方程的通解。

答 案:解:对应的齐次方程为。特征方程,特征根齐次方程通解为原方程特解为,代入原方程可得,因此
方程通解为

2、

答 案:

3、将f(x)=sin3x展开为x的幂级数,并指出其收敛区间。

答 案:解:由于可知

填空题

1、微分方程y'=ex-y满足初始条件的特解是()。

答 案:y=x

解 析:对微分方程分离变量得,等式两边同时积分得,将x=0,y=0代入得C=0,故微分方程的特解为y=x。

2、过点M0(1,-2,0)且与直线垂直的平面方程为()。

答 案:3(x-1)-(y+2)+x=0(或3x-y+z=5)

解 析:因为直线的方向向量s=(3,-1,1),且平面与直线垂直,所以平面的法向量,由点法式方程有平面方程为:3(x-1)-(y+2)+(z-0)=0,即3(x-1)-(y+2)+z=0。

3、若f(x)是连续函数的偶函数,且,则=()。

答 案:2m

解 析:由于f(x)为连续的偶函数,因此

简答题

1、计算  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里