2024年成考专升本《高等数学一》每日一练试题06月05日

2024-06-05 11:34:04 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题06月05日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数单调减少的区间为()。

  • A:(-∞,1]
  • B:[1,2]
  • C:[2,+∞)
  • D:[1,+∞)

答 案:B

解 析:的定义域为(-∞,+∞),求导得得驻点当x<1时,f(x)单调增加;当1<x<2时,,f(x)单调减少;当x>2时,f(x)单调增加.故单调递减区间为[1,2]。

2、曲线y的水平渐近线方程是()

  • A:y=2
  • B:y=-2
  • C:y=1
  • D:y=-1

答 案:D

解 析:所以水平渐近线为y=-1 ps:若,则y=A是水平渐近线,若则x=c是铅直渐近线。  

3、下列函数在[1,e]上满足拉格朗日中值定理条件的是()。

  • A:1/(1-x)
  • B:lnx
  • C:1/(1-lnx)
  • D:

答 案:B

解 析:AC两项,在[1,e]不连续,在端点处存在间断点(无穷间断点);B项,lnx在[1,e]上有定义,所以在[1,e]上连续,且在(1,e)内有意义,所以lnx在(1,e)内可导;D项,定义域为[2,+∞],在[1,2)上无意义。

主观题

1、设ex-ey=siny,求y'。

答 案:解:

2、求函数的极值及凹凸区间和拐点。

答 案:解:(2)令y'=0,得x1=0,x2=2。令y''=0,得
(3)列表如下:

函数的极小值为y(0)=0,极大值为函数的凹区间为函数的凸区间为函数的拐点为

3、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为,解得r1=3,r2=-2.所以齐次通解为。设方程的特解设为y*=(Ax+B)ex,代入原微分方程可解得,A=,B=.即非齐次微分方程特解为。所以微分方程的通解为

填空题

1、已知函数在[-1,1]上满足罗尔定理的条件,那么由定理所确定的=()。

答 案:

解 析:,解得

2、设y=f(x)可导,点x0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为()。

答 案:y=3

解 析:由于y=f(x)可导,且点x0=2为f(x)的极小值点,由极值的必要条件可得又f(2)=3,可知曲线过点(2,3)的切线方程为

3、广义积分=()。

答 案:

解 析:

简答题

1、讨论级数敛散性。

答 案:所以级数收敛。  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里