2024年成考专升本《高等数学一》每日一练试题05月19日

2024-05-19 11:30:49 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学一》每日一练试题05月19日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设收敛,sn=,则sn()。

  • A:必定存在且值为0
  • B:必定存在且值可能为0
  • C:必定存在且值一定不为0
  • D:可能不存在

答 案:B

解 析:由级数收敛的定义,级数的前n项和存在,则级数必收敛。

2、=()。

  • A:3
  • B:2
  • C:1
  • D:0

答 案:C

解 析:x2+1在(-∞,∞)都是连续的,函数在连续区间的极限,可直接代入求得,=0+1=1。

3、若函数F(x)和G(x)都是函数f(x)的原函数,则下列四个式子,正确的是()。

  • A:
  • B:F(x)+G(x)=C
  • C:F(x)=G(x)+1
  • D:F(x)-G(x)=C

答 案:D

解 析:

主观题

1、求函数的凹凸性区间及拐点.

答 案:解:函数的定义域为.令y″=0,得x=6;不可导点为x=-3。故拐点为(6,),(-∞,-3)和(-3,6)为凸区间,(6,+∞)为凹区间。

2、设D是由直线y=x与曲线y=x3在第一象限所围成的图形.(1)求D的面积S;
(2)求D绕x轴旋转一周所得旋转体的体积V。

答 案:解:由,知两曲线的交点为(0,0),(1,1)和(-1,-1),则(1)(2)

3、求曲线y=x2在点(a,a2)(a<1)的一条切线,使由该切线与x=0、x=1和y=x2所围图形的面积最小。

答 案:解:设所求切线的切点为(a,b),见下图,则b=a2,切线方程为y-b=2a(x-a),y=2ax-2a2+b=2ax-a2。设对应图形面积为A,则
,则,令。当a<时,f'(a)<0;当a>时,f'(a)>0,故为f(a)的最小值点,切线方程为:y=x-

填空题

1、设,则()。

答 案:2e2

解 析:,则

2、极限=()。

答 案:2

解 析:

3、曲线在点(1,2)处的切线方程为()。

答 案:y-2=3(x-1)

解 析:y=2x2-x+1点(1,2)在曲线上,且,因此曲线过点(1,2)的切线方程为y-2=3(x-1),或写为y=3x-1。

简答题

1、已知函数f(x)连续,且满足,求f(x).  

答 案:由于两边同时求导得所以

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里