2024-05-01 11:32:13 来源:吉格考试网
2024年成考专升本《高等数学二》每日一练试题05月01日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若,则。()
答 案:错
解 析:所以
单选题
1、曲线().
答 案:A
解 析:所以曲线有水平渐近线y=1,但没有铅直渐近线.
2、函数在定义域内的凸区空间是()
答 案:C
解 析:
主观题
1、每次抛掷一枚骰子(6个面上分别标有数字1、2、3、4、5、6),连续抛掷2次,设A={向上的数字之和为6},求P(A).
答 案:解:基本事件数为抛掷两次,向上的数字之和为6的事件共有5种,即(1,5),(2,4),(3,3),(4,2),(5,1).注意事件(1,5)与(5,1)是两个不同的事件:第一次出现1或5而第二次出现5或1是两个不同的结果,所以P(A)=.
2、某商店库存100台相同型号的冰箱待售,其中有60台是甲厂生产的,有25台是乙厂生产的,有15台是丙厂生产的.这三个厂生产的冰箱不合格率分别为:0.1,0.4,0.2;一顾客从这批冰箱中随机地买了1台,开机测试后发现是不合格冰箱,由于厂标已脱落,试问这台冰箱最有可能是哪个厂生产的?
答 案:解:设B={顾客买的冰箱不合格),A1={甲厂生产的冰箱),A2=(乙厂生产的冰箱},A3=(丙厂生产的冰箱).由题意,且A1,A2,A3相互独立故,由贝叶斯公式得,顾客买不合格的冰箱是甲厂生产的概率为:
同理,不合格品是乙厂生产的概率为:
不合格品是丙厂生产的概率为:
比较上述三个数据知,这台不合格冰箱最有可能是乙厂生产的.
填空题
1、若,则().
答 案:3
解 析:因为又因为数列有无极限和其极限值是多少与数列中含有限项的个数无关,所以,则原式=3.
2、
答 案:
解 析:本题考查了反常积分的计算的知识点.
简答题
1、
答 案:
2、计算
答 案: 设则