2024年成考专升本《高等数学一》每日一练试题04月02日

2024-04-02 11:27:26 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信 Scan me!

2024年成考专升本《高等数学一》每日一练试题04月02日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、下列各点在球面(x-1)2+y2+(z-1)2=1上的是()。

  • A:(1,0,1)
  • B:(2,0,2)
  • C:(1,1,1)
  • D:(1,1,2)

答 案:C

解 析:将各个点代入球面公式可知(1,1,1)在球面上。

2、

  • A:2x2+C
  • B:x2+C
  • C:1/2x2+C
  • D:x+C

答 案:C

3、设都为正项级数,且则下列结论正确的是()。

  • A:若收敛,则收敛
  • B:若发散,则发散
  • C:若收敛,则收敛
  • D:若收敛,则发散

答 案:C

解 析:由正项级数的比较判别法可知,若都为正项级数,且则当收敛时,可得知必定收敛.

主观题

1、计算

答 案:

2、设,求y'.

答 案:解:

3、求微分方程的通解.

答 案:解:对应齐次微分方程的特征方程为,解得r1=3,r2=-2.所以齐次通解为。设方程的特解设为y*=(Ax+B)ex,代入原微分方程可解得,A=,B=.即非齐次微分方程特解为。所以微分方程的通解为

填空题

1、()

答 案:

解 析:

2、设a≠0,则=()。

答 案:

解 析:

3、()。

答 案:

解 析:由不定积分性质,可得

简答题

1、设f(x)求f(x)的间断点。

答 案:由题意知,使f(x)不成立的x值,均为f(x)的间断点,故sin(x-3)=0或x-3=0时f(x)无意义,所以方程点为: x-3=  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里
用户服务协议与隐私政策

感谢您信任并使用聚题库系统。我们深知个人信息和隐私保护的重要性,为了更好地保护您的个人权益,在使用产品前请充分阅读并理解《用户服务协议》《隐私协议》


长沙聚优教育咨询有限公司(以下简称“长沙聚优”)在此特别提醒您在使用相关服务前,请认真阅读协议条款内容,确保您充分理解协议中各条款,特别是免除或者限制责任、法律适用和管辖的条款,以及开通或使用某项服务的单独协议,并选择接受或不接受。如你未满18周岁,请在法定监护人陪同下仔细阅读并充分理解本协议,并征得法定监护人的同意后使用“聚题库”软件及相关服务。除非您接受本协议所有条款,否则您无权注册、登录或使用本协议所涉服务。


隐私权政策适用我们提供的软件、网站、服务,包括但不限于适用于电脑、移动智能终端产品及服务。


本隐私权政策旨在帮助您了解我们会收集哪些数据,为什么收集这些数据、会利用这些数据做什么以及我们如何保护这些数据。了解这些内容,对于您行使个人权利及保护您的个人信息至关重要,请您在使用我们产品或服务前务必抽出时间认真阅读本政策。

不同意
同意

需要获得您的同意后才能使用服务