2024-02-12 11:20:58 来源:吉格考试网
2024年成考专升本《高等数学二》每日一练试题02月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若,则。()
答 案:错
解 析:所以
单选题
1、设函数,则f'(x)=().
答 案:A
解 析:因为,令,故,代入原函数方程得,即所以
2、函数在定义域内().
答 案:A
解 析:函数的定义域为,因为,所以y单调增加,.又,当x>0时,y''>0,曲线为凹;当x<0时,y''<0,曲线为凸.
主观题
1、在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各为多少时矩形面积最大?最大值是多少?
答 案:解:如图所示,设x轴通过半圆的直径,y轴垂直且平分直径.设OA=x,则AB=,矩形面积.令s'=0,得(舍去负值).
由于只有唯一驻点,根据实际问题x=,必为所求,则AB=R.所以,当矩形的长为R、宽为R时,矩形面积最大,且最大值S=R2.
2、计算.
答 案:解:设,则dx=2tdt.当x=0时,t=0;当x=1时,t=1.则
填空题
1、=().
答 案:xcosx-sinx+C
解 析:由分部积分得
2、设函数z=ln(x+y2),则全微分dz=().
答 案:
解 析:,故.
简答题
1、求函数的单调区间、极值及函数曲线的凸凹性区间、拐点和渐近线.
答 案:所以函数y的单调增区间为单调减区间为(0,1);函数y的凸区间为凹区间为故x=0时,函数有极大值0,x=1时,函数有极小值-1,且点为拐点,因不存在,且没有无意义的点,故函数没有渐近线。
2、求由曲线y=x2与x=2,y=0所围成图形分别绕x轴,y轴旋转一周所生成的旋转体体积.
答 案: 绕y轴旋转一周所得的旋转体体积为