2024年成考专升本《高等数学二》每日一练试题02月06日

2024-02-06 11:36:20 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2024年成考专升本《高等数学二》每日一练试题02月06日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

判断题

1、若,则。()  

答 案:错

解 析:所以  

单选题

1、().

  • A:3x3+C
  • B:x3+C
  • C:+C
  • D:+C

答 案:C

解 析:由积分公式可得.

2、().

  • A:0
  • B:-1
  • C:2
  • D:3

答 案:C

解 析:.

主观题

1、求一个正弦曲线与x轴所围成图形的面积(只计算一个周期的面积).

答 案:解:取从0~2π的正弦曲线如图,设所围图形面积为S,则注意到图形面积是对称的,可直接得出

2、证明:当x>1时,x>1+lnx.

答 案:证:设f(x)=x-1-lnx,则f'(x)=.当x>1时,f'(x)>0,则f(x)单调上升.所以当x>1时,f(x)>f(1)=0,即x-1-lnx>0,得x>1+lnx.

填空题

1、().

答 案:1

解 析:由等价无穷小可知,时,即,故

2、设函数,且f(u)可导,则dy=().

答 案:

解 析:因为,所以

简答题

1、从一批有10件正品及2件次品的产品中,不放回地一件一件地抽取产品,设每个产品被抽到的可能性相同,求直到取出正品为止所需抽取的次数X的概率分布。  

答 案:由题意,X的所有可能的取值为1,2,3, X=1,即第一次就取到正品,P{X=1}= X=2,即第一次取到次品且第二次取到正品,P{X=2}= 同理,P{X=3}= 故X的概率分布如下  

2、求函数的单调区间、极值及函数曲线的凸凹性区间、拐点和渐近线.

答 案:所以函数y的单调增区间为单调减区间为(0,1);函数y的凸区间为凹区间为故x=0时,函数有极大值0,x=1时,函数有极小值-1,且点为拐点,因不存在,且没有无意义的点,故函数没有渐近线。

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里