2023年成考专升本《高等数学一》每日一练试题11月11日

2023-11-11 11:25:54 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考专升本《高等数学一》每日一练试题11月11日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、下列等式成立的是()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:A项,由,可知;B项,;C项,;D项,

2、函数的单调减区间为()。

  • A:(-∞,-2)(-2,+∞)
  • B:(-2,2)
  • C:(-∞,0)(0,+∞)
  • D:(-2,0)(0,2)

答 案:D

解 析:由,得驻点为x=±2,而不可导点为x=0,列表讨论如下:故单调减区间为(-2,0)(0,2)。

3、设y=f(x)在点x0的某邻域内可导,且=0,则点x0一定是()。

  • A:极大值点
  • B:极小值点
  • C:驻点
  • D:拐点

答 案:C

解 析:极值点是函数某段子区间的最值,一般在驻点或者不可导点取得;驻点是函数一阶导数为0的点对应的x值;拐点是凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点;综上所述,点x0为该函数的驻点。

主观题

1、将展开为x的幂级数.

答 案:解:因为,所以

2、证明:当x>0时,

答 案:证:设f(x)=(1+x)ln(1+x)-x,则f'(x)=ln(1+x)。当x>0时,f'(x)=ln(1+x)>0,故f(x)在(0,+∞)内单调增加,
且f(0)=0,故x>0时,f(x)>0,
即(1+x)Ln(1+x)-x>0,(1+x)ln(1+x)>x。

3、求过点M0(0,2,4),且与两个平面π1,π2都平行的直线方程,其中

答 案:解:如果直线l平行于π1,则平面π1的法线向量n1必定垂直于直线l的方向向量s.同理,直线l平行于π2,则平面π2的法线向量n2必定满足n2⊥s.由向量积的定义可知,取由于直线l过点M0(0,2,4),由直线的标准方程可知为所求直线方程。

填空题

1、设F(x,y,z)=0,其中z为x,y的二元函数,F(x,y,z)对x,y,z存在连续偏导数,且=()。

答 案:

解 析:根据复合函数求偏导法则可得:,要求z对x的偏导,则把y看做常数,所以有,所以

2、曲线在点(1,2)处的切线方程为()。

答 案:y-2=3(x-1)

解 析:y=2x2-x+1点(1,2)在曲线上,且,因此曲线过点(1,2)的切线方程为y-2=3(x-1),或写为y=3x-1。

3、微分方程y'+4y=0的通解为()。

答 案:y=Ce-4x

解 析:将微分方程分离变量,得,等式两边分别积分,得

简答题

1、求曲线的拐点;  

答 案:  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里