2023-10-17 11:21:03 来源:吉格考试网
2023年成考专升本《高等数学二》每日一练试题10月17日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。
判断题
1、若,则。()
答 案:错
解 析:所以
单选题
1、设函数().
答 案:D
解 析:由题意知.因为所以不存在.
2、设y=arccosx,则y'=()
答 案:B
解 析:
主观题
1、在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各为多少时矩形面积最大?最大值是多少?
答 案:解:如图所示,设x轴通过半圆的直径,y轴垂直且平分直径.设OA=x,则AB=,矩形面积.令s'=0,得(舍去负值).
由于只有唯一驻点,根据实际问题x=,必为所求,则AB=R.所以,当矩形的长为R、宽为R时,矩形面积最大,且最大值S=R2.
2、求由方程siny+xey=0确定的曲线在点(0,π)处的切线方程.
答 案:解:方程两边对x求导得得所以,故所求切线方程为y-π=eπ(x-0),即eπx-y+π=0
填空题
1、若,则=().
答 案:4x
解 析:根据不定积分定义可知,有故
2、当f(0)=()时,f(x)=在x=0处连续。
答 案:mk
解 析:所以当f(0)=km时,f(x)在x=0处连续。
简答题
1、求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.
答 案:如图所示,在x=a出切线的斜率为切线方程为
2、计算
答 案: 设则