2023年成考专升本《高等数学一》每日一练试题09月15日

2023-09-15 11:24:20 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考专升本《高等数学一》每日一练试题09月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、级数(a为大于零的常数)()。

  • A:绝对收敛
  • B:条件收敛
  • C:发散
  • D:收敛性与a有关

答 案:A

解 析:级数,因此为收敛级数,由级数性质可知绝对收敛。

2、下列等式成立的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由

3、当x→0时,为x的()  

  • A:高阶无穷小量
  • B:等价无穷小量
  • C:同阶但不等价无穷小量
  • D:低阶无穷小量

答 案:A

解 析:由题可知,故是x的高阶无穷小量。

主观题

1、求微分方程满足初始条件的特解。

答 案:解:将方程改写为,则故方程通解为代入通解,得从而所求满足初始条件的特解为

2、求

答 案:解:

3、判断级数的敛散性。

答 案:解:令,则,由于故有当<1,即a>e时,该级数收敛;当>1,即a<e时,该级数发散。

填空题

1、设y=f(x)可导,点x0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为()。

答 案:y=3

解 析:由于y=f(x)可导,且点x0=2为f(x)的极小值点,由极值的必要条件可得又f(2)=3,可知曲线过点(2,3)的切线方程为

2、级数的收敛半径是()。

答 案:

解 析:

3、微分方程y'=ex-y满足初始条件的特解是()。

答 案:y=x

解 析:对微分方程分离变量得,等式两边同时积分得,将x=0,y=0代入得C=0,故微分方程的特解为y=x。

简答题

1、

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里