2023年成考高起点《数学(理)》每日一练试题07月23日

2023-07-23 11:59:02 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题07月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、对满足a>b的任意两个非零实数,下列不等式成立的是()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:A错误,例如-2>4,而 B错误,例如:-10>100,而 C错误,例如:-1>-2,而

2、展开式中,末3项的系数(a,x 均未知) 之和为()  

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三项数之和为

3、过点(-2,2)与直线x+3y-5=0平行的直线是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.

4、方程的图像是下图中的()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式  

主观题

1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直  

3、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

4、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

填空题

1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()  

答 案:

解 析:由于a//b,故

2、函数的定义域是()

答 案:

解 析:所以函数的定义域是

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里