2023年成考高起点《数学(文史)》每日一练试题07月07日

2023-07-07 11:58:06 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(文史)》每日一练试题07月07日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

2、已知,则sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:两边平方得,故

3、函数f(x)=在区间[1,4]上的最大值和最小值分别是()

  • A:2和-2
  • B:2,没有最小值
  • C:1和1
  • D:2和4

答 案:A

解 析:f(x)=  

4、任选一个两位数,它恰好是10的倍数的概率是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知条件可知此题属于等可能事件.两位数(正整数)从10~99共有90个,则n=90,是10的倍数的两位数共有9个,则m=9,故任选一个两位数(正整数),它恰好是10的倍数的概率是

主观题

1、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

2、已知三角形的一个内角是,面积是周长是20,求各边的长.  

答 案:设三角形三边分别为a,b,c,∠A=60°,  

3、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

填空题

1、函数f(x)=在区间[-3,3]上的最大值为()  

答 案:4

解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.  

2、()

答 案:3

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里