2023年成考高起点《数学(理)》每日一练试题06月30日

2023-06-30 11:45:21 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题06月30日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若tanα=3,则

  • A:-2
  • B:
  • C:2
  • D:-4

答 案:A

解 析:

2、已知,则sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:两边平方得,故

3、若甲:x>1,乙:则  

  • A:甲是乙的必要条件,但不是乙的充分条件
  • B:甲是乙的充分必要条件
  • C:甲不是乙的充分条件,也不是乙的必要条件
  • D:甲是乙的充分条件,但不是乙的必要条件

答 案:D

解 析:故甲是乙的充分条件,但不是必要条件

4、设集合A={0,1},B={0,1,2},则A∩B=()  

  • A:{1,2}
  • B:{0,2}
  • C:{0,1}
  • D:{0,1,2}

答 案:C

解 析:

主观题

1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:  

答 案:(Ⅰ)由题意知(如图所示)  

4、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

填空题

1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

2、函数的定义域是()

答 案:

解 析:所以函数的定义域是

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里