答 案:D
解 析:
2、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()
- A:①②都为真命题
- B:①为真命题,②为假命题
- C:①为假命题,②为真命题
- D:①②都为假命题
答 案:B
解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.
3、函数的反函数是()
答 案:A
解 析:,由于x≤0,故把x与y互换,得所求反函数为
4、已知复数z=a+bi,其中a,且b≠0,则()
答 案:C
解 析:注意区分
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD==60m,
即河宽为60m
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值
4、已知数列的前n项和
求证:是等差数列,并求公差和首项。
答 案:
填空题
1、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
2、设离散型随机变量的分布列如下表,那么的期望等于()
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48