2023年成考高起点《数学(文史)》每日一练试题03月28日

2023-03-28 11:28:08 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(文史)》每日一练试题03月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合M={x||x-2||<2},N={0,1,2,3,4},则M∩N=()

  • A:{2}
  • B:{0,1,2}
  • C:{1,2,3}
  • D:{0,1,2,3,4}

答 案:C

解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.

2、已知,则sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:两边平方得,故

3、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

4、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知a=(2,m),因此,故m=0.

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

填空题

1、()

答 案:3

解 析:

2、点(4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里