课程
题库
分享到空间
分享到新浪微博
分享到QQ
分享到微信
2023年成考高起点《数学(文史)》每日一练试题03月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知
,则sin2α=()
答 案:D
解 析:
两边平方得
,故
2、函数
的定义域是()
- A:{x|-3≤x≤-1}
- B:{x|x≤-3或x≥-1}
- C:{x|1≤x≤3}
- D:{x|x≤1或x≥3}
答 案:D
解 析:由题可知x2-4x+3≥0,解得x≥3或x≤1,故函数的定义域为{x|x≤1或x≥3}.
3、函数y=x2+1(x>0)的图像在()
答 案:A
解 析:当x>0时,函数y=x2+1>0,因此函数的图像在第一象限.
4、已知直线l:3x一2y-5=0,圆C:
,则C上到l的距离为1的点共有()
答 案:D
解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为
,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
主观题
1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
2、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
得
设A(x1,y1).B(x2,y2),则
因此
3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为
,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得
解得
填空题
1、
()
答 案:3
解 析:
2、点(4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).
温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!