2023-03-23 11:17:53 来源:吉格考试网
2023年成考高起点《数学(理)》每日一练试题03月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、函数的反函数是()
答 案:A
解 析:,由于x≤0,故把x与y互换,得所求反函数为
2、的展开式中,x2的系数为()
答 案:C
解 析:二项展开式的第二项为,故展开式中的x2的系数为5.
3、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
4、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()
答 案:D
解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
主观题
1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
2、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
填空题
1、点((4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).
2、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为