2023年成考高起点《数学(理)》每日一练试题01月14日

2023-01-14 11:04:45 来源:吉格考试网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题01月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、i为虚数单位,则(2-3i)(3+2i)=

  • A:12-13i
  • B:-5i
  • C:12+5i
  • D:12-5i

答 案:D

2、若函数f(x)是奇函数,则函数F(x)=f(x)*sin(3π/2-x)的奇偶性是()。

  • A:奇函数
  • B:偶函数
  • C:非奇非偶函数
  • D:既是奇函数.又是偶函数

答 案:A

解 析:∵ƒ(x)是奇函数,∴ƒ(-x)=-ƒ(x);∵F(x)=f(x)*(-cosx)=-f(x)cosx;∴F(-x)=-f(-x)cos(-x)=ƒ(x)cosx=-F(x);∴F(x)=f(x)*sin(3π/2-x)为奇函数。

3、过点(2,1)且与直线y=0垂直的直线方程为(  )

  • A:x=2
  • B:x=1
  • C:y=2
  • D:y=1

答 案:A

解 析:由函数的图像可知选A。

4、若U={x|x=k,k∈Z},S={x|x=2k,k∈Z},T={x|x=2k+1,k∈Z},则()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:∵U为实数集,S为偶数集,T为奇数集。∴T(奇数集)在实数集U中的补集是偶数集S。

主观题

1、

答 案:

2、建筑一个容积为8000m3,深为6m的长方体蓄水池,池壁每m2的造价为15元,池底每m2的造价为30元。(Ⅰ)把总造价y(元)表示为长x(m)的函数;
(Ⅱ)求函数的定义域。

答 案:

3、

答 案:

4、已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程。

答 案:

填空题

1、设正三角形的一个顶点在原点,且关于x轴对称,另外两个顶点在抛物线y2=2√3上,则此三角形的边长为(  )。

答 案:12

解 析:设A(x0,y0)为正三角形的一个顶点,且在x轴上方,OA=m,

2、圆x2+y2=5在点(1,2)处的切线的方程为()。

答 案:x+2y一5=0

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2024成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里