2024-12-13 12:07:21 来源:吉格考试网
2024年成考高起点《数学(文史)》每日一练试题12月13日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()
答 案:C
解 析:由题可知a=(2,m),因此,故m=0.
2、设集合M={-2,0,2},N={0},则()。
答 案:C
解 析:⫋真包含:A真包含于B,则A为B的真子集,例如:若B={1,2},则A={1}或{2}或空集。因此选C。注意:属于(∈)是元素和集合之间的关系,此题是集合与集合之间关系。
3、过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是()。
答 案:C
4、下面四个关系式其中正确的个数为()
答 案:A
解 析:
主观题
1、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm, 由题意得y-y0=kx,即y=kx+y0, 由已知条件得 解得k=0.2,y0=8. 所求函数关系式为y=0.2x+8,弹的原长为8CM
2、已知函数ƒ(x)=ax3-x2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数. (Ⅰ)求a,b的值; (Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.
答 案:(Ⅰ)因为函数ƒ(x)在(-∞,0)上递增,在(0,1)内递减,在(1,+∞)上有递增,可知函数在x=0和x=1处的导数值均为0. 又f’(x)=3ax2-2x+b, 所以f’(0)=b=0,f’(1)=3a-2+b=0. 即切点为(3.10),所以其切线方程为y-10=12(x-3),即12x-y-26 = 0.
解 析:【考点指要】本题主要考查函数导数的几何意义、导数的求法和导数的应用——函数的单调区间及曲线的切线方程的求法
3、cos20°cos40°cos80°的值。
答 案:
4、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。
答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6
填空题
1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
2、()
答 案:3
解 析:
2023年成考高起点《数学(文史)》每日一练试题12月13日 12-13 2022年成考高起点《数学(文史)》每日一练试题12月13日 12-13 2024年成考高起点《数学(文史)》每日一练试题02月13日 02-13 2024年成考高起点《数学(文史)》每日一练试题01月13日 01-13 2024年成考高起点《数学(文史)》每日一练试题05月13日 05-13 2024年成考高起点《数学(文史)》每日一练试题04月13日 04-13 2024年成考高起点《数学(文史)》每日一练试题03月13日 03-13 2024年成考高起点《数学(文史)》每日一练试题08月13日 08-13